Главная > Химия > Химия в действии, Ч.1
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ЭНТРОПИЯ

Первый закон термодинамики утверждает, что, хотя между системой и ее окружением возможна передача энергии, энергия никогда не создается и не исчезает. Таким образом, этот закон накладывает на химические и физические превращения требование сохранения энергии. Одно время полагали, что все химические реакции являются экзотермическими, другими словами, химическая реакция может осуществляться только в том случае, если система теряет энергию. Однако в настоящее время известны многие химические и физические превращения, которые являются эндотермическими. Следовательно, по одному лишь изменению энергии или энтальпии еще нельзя предсказать, будет самопроизвольно осуществляться реакция или нет. Чтобы предсказать, возможно ли самопроизвольное протекание реакции, необходимо ввести еще одну термодинамическую функцию состояния, называемую энтропией. Энтропию принято обозначать буквой S.

Энтропию можно охарактеризовать как меру хаотичности, беспорядка или неупорядоченности в системе. Например, мы уже указывали, что частицы газа в гораздо

Рис. 5.16. Самопроизвольное смешивание двух газов приводит к возрастанию энтропии, но не сопровождается суммарным изменением энергии в системе.

большей мере не упорядочены, чем частицы твердого вещества; следовательно, энтропия газов, как правило, намного больше, чем энтропия твердых веществ.

Но как, зная энтропию, можно предсказать, осуществимо ли самопроизвольно некоторое превращение? Чтобы ответить на этот вопрос, рассмотрим систему, состоящую из двух сосудов, соединенных между собой трубкой с краном (рис. 5.16). Допустим, что в этих сосудах находятся разные газы. Если открыть кран, газы начнут самопроизвольно смешиваться в результате диффузии (см. разд. 3.1). После смешивания газы окажутся в состоянии с большей степенью беспорядка, чем до смешивания. Следовательно, после смешивания они обладают большей энтропией. В этом процессе не происходит изменения энергии. Суммарная энтальпия газов до и после смешивания совершенно одинакова. Однако смешивание приводит к более хаотическому распределению энергии.

Во многих химических реакциях тоже происходит перераспределение энергии. Например, реакции горения представляют собой экзотермические процессы. В результате горения происходит выделение энергии и ее перераспределение в окружающую среду. Таким образом, можно рассматривать энтропию как меру распределенности энергии. Протекание химических реакций всегда сопровождается перераспределением энергии либо от химической системы к ее окружению, либо, наоборот, от окружения к химической системе. Таким образом, в химической реакции всегда происходит изменение энтропии. Именно это изменение энтропии наряду с изменением энтальпии в реакции необходимо учитывать, если требуется предсказать, возможно ли самопроизвольное протекание рассматриваемой химической реакции. Однако, прежде чем мы обсудим соотношение между изменениями энтропии и энтальпии и возможностью самопроизвольного протекания реакции, необходимо познакомиться со вторым законом термодинамики.

Второй закон термодинамики

Этот закон утверждает, что все самопроизвольно протекающие процессы обязательно сопровождаются увеличением суммарной энтропии системы и ее окружения. Второй закон термодинамики, возможно, является одним из наиболее общих положений всей науки в целом. Существует много различных формулировок этого закона. Но главная мысль всех этих формулировок заключается в том, что в любой изолированной системе с течением времени происходит постоянное возрастание степени беспорядка, т.е. энтропии.


Некоторые формулировки второго закона термодинамики

1. Каждая система, предоставленная сама себе, изменяется в среднем в направлении состояния с максимальной вероятностью (Г. Льюис).

2. Состояние с максимальной энтропией является наиболее устойчивым состоянием для изолированной системы (Э. Ферми).

3. При протекании любого реального процесса невозможно обеспечить средства возвращения каждой из участвующих в нем систем в ее исходное состояние (Г. Льюис).

4. Каждый физический или химический процесс в природе протекает таким образом, чтобы увеличивалась сумма энтропий всех тел, которые принимают участие в этом процессе (М. Планк).

5. Невозможна самопроизвольная передача теплоты от более холодного к более горячему телу.

6. Получение информации представляет собой уменьшение энтропии (Г. Льюис).

7. Энтропия - это стрелка времени (А. Эддингтон).

Эту формулировку следует понимать в том смысле, что по изменению энтропии можно судить о последовательности различных самопроизвольных событий. - Прим. перев.


Из второго закона термодинамики следует, что для любых самопроизвольных процессов

где полное (суммарное) изменение энтропии в результате химического или физического превращения определяется выражением

Изменения энтропии в химических реакциях

Энтропия одного моля вещества в его стандартном состоянии при соответствующей температуре называется стандартной молярной энтропией. Стандартная молярная энтропия обозначается символом и имеет размерность В табл. 5.12 указаны стандартные молярные энтропии ряда элементов и соединений при температуре Отметим, что стандартная молярная энтропия газов, как правило, имеет намного большие значения по сравнению с энтропией твердых тел. Энтропия любого фиксированного количества вещества увеличивается в такой последовательности:

Стандартные молярные энтропии иногда называют абсолютными энтропиями. Они не являются изменениями энтропии, сопровождающими образование соединения из входящих в него свободных элементов. Следует также отметить, что стандартные молярные энтропии свободных элементов (в виде простых веществ) не равны нулю.


Третий закон термодинамике утверждает, что энтропия идеального ионного кристалла при температуре абсолютного нуля (0 К) равна нулю.


Таблица 5.12. Стандартные молярные энтропии

Изменение стандартной молярной энтропии в химической реакции определяется уравнением


Пример

Вычислим стандартное молярное изменение энтропии для полного сгорания одного моля газообразного водорода при 25°С, пользуясь данными, которые приведены в табл. 5.1.

Решение

Уравнение рассматриваемой реакции имеет вид

Применяя уравнение (16), находим

Подстановка в это уравнение значений энтропии при температуре 298 К из табл. 5.12 дает


Следует обратить внимание на то, что изменение энтропии в рассмотренном примере оказывается отрицательным. Этого можно было ожидать, если учесть, что, согласно уравнению рассматриваемой реакции, суммарное количество газообразных реагентов равно 1,5 моль, а суммарное количество газообразных продуктов - только 1 моль. Таким образом, в результате реакции происходит уменьшение общего количества газов. Вместе с тем нам известно, что реакции горения принадлежат к числу экзотермических реакций. Следовательно, результатом их протекания является рассеяние энергии, а это заставляет ожидать возрастания энтропии, а не ее уменьшения. Далее, следует учесть, что горение газообразного водорода при 25°С, вызванное первоначальным инициированием, протекает затем самопроизвольно и с большой интенсивностью. Но разве не должно в таком случае изменение энтропии в данной реакции быть положительным, как того требует второй закон термодинамики? Оказывается - нет или по крайней мере не обязательно должно. Второй закон термодинамики требует, чтобы в результате самопроизвольного процесса возрастала суммарная энтропия системы и ее окружения. Вычисленное выше изменение энтропии характеризует только рассматриваемую химическую систему, состоящую из реагентов и продуктов, которые принимают участие в горении газообразного водорода при 25°С. А как же вычислить изменение энтропии для окружения этой системы?

Изменения энтропии для окружения термодинамической системы

Термодинамические соображения позволяют показать, что изменение энтропии равно отношению энергии, переданной в форме теплоты , к абсолютной температуре Т, при которой происходит эта передача энергии, т.е.

Это изменение энтропии может быть отнесено либо к системе, либо к ее окружению. Однако имеется одно условие. Тепловая энергия q должна передаваться обратимым путем. В термодинамике обратимым процессом называется такой процесс, который проводится бесконечно медленно и осторожно, так чтобы он все время находился практически в состоянии равновесия. В экзотермическом процессе энергия, теряемая системой, равна энергии, которую приобретает окружение системы. И наоборот, в эндотермическом процессе энергия, поглощаемая системой, равна энергии, которую теряет окружение системы. Поэтому можно записать

Ранее мы указывали, что при постоянном давлении энергия, передаваемая в форме теплоты в ходе химической реакции, равна изменению энтальпии . Следовательно,

Воспользуемся теперь уравнением (18) и перепишем уравнение (17) в таком виде:

Мокружсние

Суммарное изменение энтропии при протекании химической реакции

Выше было показано, что суммарное изменение энтропии при протекании самопроизвольного процесса равно сумме изменения энтропии системы и изменения энтропии окружения системы (см. уравнение (15)). Изменение энтропии в системе, где протекает химическая реакция, определяется уравнением (16), а изменение энтропии в окружении системы-уравнением (20). Теперь мы можем вычислить суммарное изменение энтропии, которым сопровождается химическое превращение, и проверить, удовлетворяет ли полученный результат второму закону термодинамики.


Пример

Вычислим полное изменение энтропии, которым сопровождается сгорание одного моля газообразного водорода при 25°С. Удовлетворяет ли результат вычисления второму закону термодинамики?

Решение

Полное изменение энтропии, которым сопровождается всякий процесс, определяется уравнением (15). Подставив в него выражение (20), получим

Полученное уравнение относится к сгоранию одного моля газообразного водорода при стандартных условиях в соответствии с химическим уравнением, приведенным в предыдущем примере.

Согласно условию задачи, .

Значение было вычислено в предыдущем примере и найдено равным

Стандартная энтальпия сгорания водорода, по данным табл. 5.2, равна

Следовательно,


Отметим, что, хотя изменение энтропии в реакционной системе отрицательно, полное изменение энтропии, которым сопровождается протекание реакции, положительно. Следовательно, результат, полученный нами, удовлетворяет второму закону термодинамики.

<< Предыдущий параграф Следующий параграф >>
Оглавление