Главная > Химия > Химия в действии, Ч.2
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

СТЕРЕОИЗОМЕРИЯ

Напомним, что изомеры - это соединения, которые имеют одинаковую молекулярную формулу, но различное расположение атомов.

Среди различных типов изомеров можно выделить два главных. Структурные изомеры, как мы уже указывали выше, имеют одинаковую молекулярную формулу, но их атомы связаны между собой в разной последовательности. Стереоизомеры тоже имеют одинаковую молекулярную формулу и даже одинаковую последовательность связывания атомов, но отличаются различным пространственным расположением своих атомов. Стереоизомеры в свою очередь подразделяются на две категории: геометрические и оптические изомеры.

Прежде чем перейти к рассмотрению стереоизомерии каждого типа, хотелось бы отметить, что изомеры, как структурные, так и стерео, - это соединения, которые можно отделить друг от друга и которые обладают различными физическими и/или химическими свойствами.


Стереоизомерию обнаруживают не только органические, но и неорганические соединения. Например, соединение обнаруживает геометрическую изомерию, а октаэдрический комплексный ион обнаруживает оптическую изомерию.


Геометрическая изомерия

Геометрические изомеры, как показывает их название, отличаются геометрическим расположением своих атомов. В качестве примера приведем 1,2-дибромоэтен -дибромоэтилен). Он имеет молекулярную формулу и структурную формулу Молекула со структурной формулой может иметь два разных геометрических расположения атомов. Соединения с такими расположениями атомов называются цис- и транс-изомерами. Эти изомеры заметно различаются по физическим свойствам. Например, они имеют явно различные температуры плавления и

кипения:

Слово «цис» означает «с той же стороны», а «транс» - «с противоположной стороны». Указанный тип изомерии иногда называют цис-транс-изомерией. Двойная связь в молекуле удерживает атомы в одном из этих двух положений. Вращение вокруг двойной связи невозможно. Сопоставим 1,2-дибромоэтилен с 1,2-дибромоэтаном. В последнем соединении возможно свободное вращение вокруг простой углерод-углеродной связи, поэтому изображенные ниже молекулы не являются изомерами:

Эти два расположения эквивалентны шахматной и заслоненной конформациям, которые обсуждались выше. Молекула может в один момент времени находиться в шахматной конформации, а в следующий момент времени уже в заслоненной конформации. Поэтому невозможно выделить молекулы в какой-либо одной конформации. Поскольку пространственное расположение атомов ничем не фиксировано и поскольку невозможно выделить молекулы с одной конформацией, нельзя рассматривать различные конформации как изомеры.

В заключение следует отметить, что соединение с молекулярной формулой может существовать в виде одного из двух структурных изомеров. Один из них имеет структурную формулу которой, как было показано выше, в свою очередь могут соответствовать два геометрических изомера. Другой структурный изомер имеет структурную формулу Эта структура не имеет геометрических изомеров. Формулы представляют собой просто две разные формы записи одной и той же структуры. Они соответствуют одному и тому же соединению.

Хорошим примером, на котором можно проиллюстрировать различие химических свойств у геометрических изомеров, являются геометрические изомеры бутендиовой кислоты (рис. 17.26). Ее -изомер, имеющий тривиальное название «малеиновая кислота», характеризуется температурой плавления 139-140 °С. При нагревании до 160°С или до 100°С при пониженном давлении малеиновая кислота теряет воду и превращается, с низким выходом, в ангидрид малеиновой кислоты (рис. 17.26, а). транс-Изомер бутендиовой кислоты, имеющий тривиальное название «фумаровая кислота», характеризуется температурой плавления 287 °С. При нагревании до 290 °С фумаровая кислота возгоняется. При дальнейшем нагревании до температуры 300 °С происходит ее перегруппировка с образованием -изомера (малеиновой кислоты) и небольшого количества ангидрида малеиновой кислоты (рис. 17.26,б). Механизм этой реакции включает разрыв -связи между двумя атомами углерода. За этим следует вращение вокруг -связи (рис. 17.26, в) до тех пор, пока не образуется новая -связь.

Рис. 17.26. Геометрическая изомерия.

Оптическая изомерия

Если в органическом соединении к какому-либо атому углерода присоединены четыре различных атома или группы, такой атом называется асимметрическим или хиральным. Молекула, содержащая один или несколько асимметрических атомов углерода, обычно, хотя и не всегда, тоже является асимметрической (хиральной). Примером соединения с одним асимметрическим атомом углерода является 2-гидроксипропа-ыовая (молочная) кислота. Ее центральный атом углерода является асимметрическим, потому что с ним связаны четыре различных атома или группы. Такую молекулу никакими вращениями в пространстве невозможно совместить с ее зеркальным отображением (рис. 17.27). Поэтому две молекулы, которые являются зеркальными отображениями Друг друга, представляют собой изомеры. Они называются энантиомерами.

Энантиомеры могут существовать изолированно друг от друга либо в виде смеси. Смесь, содержащая эквимолярное количество (равное число молей) каждого из двух энантиомеров, называется рацемической смесью. Разделение рацемической смеси на два

Рис. 17.27. 2-Гидроксипропановая (молочная) кислота.

чистых энантиомера называется расщеплением. Кристаллы двух энантиомеров представляют собой зеркальные отображения друг друга.

Энантиомеры различаются только по оптической активности, все остальные физические и химические свойства их одинаковы.


Хиральность

Если рассматривать в зеркале свою левую руку, она выглядит в точности так. как правая рука. Таким образом, левая и правая руки человека являются зеркальными отображениями друг друга. Теперь представьте себе мысленно, что вы поменяли местами левую и правую кисти рук. При этом как бы вы ни старались их повернуть - вверх ладонью или вниз — левая рука никогда не будет идентична правой и, наоборот, правая - левой. Таким образом, хотя правая рука является зеркальным отображением левой руки, одну из них никак нельзя совместить с другой. В этом и заключается свойство, называемое хиральностью. Это понятие распространяется на все эквивалентные, но левосторонние и правосторонние объекты, например на ноги. Слово «хиральность» происходит от греческого слова, означающего руку.

Хиральность обусловлена отсутствием симметрии, т.е. асимметрией. Любая пара предметов, которые являются зеркальными отображениями друг друга, но не могут быть совмещены никакими поворотами, является парой асимметрических предметов.


Что такое оптическая активность? Луч обычного света представляет собой поток электромагнитных волн, колебания которых происходят во всех направлениях под прямым углом к направлению распространения луча света. На рис. 17.28,а схематически изображен пучок света, колебания в котором происходят по четырем разным направлениям, т.е. в четырех разных плоскостях. В правой части рисунка показано также поперечное сечение этих плоскостей. Свет, колебания которого происходят только в одной плоскости, называется плоскополяризованным. Такой свет схематически изображен на рис. 17.28, б.

Соединение, способное вращать проходящий сквозь него плоскополяризованный свет таким образом, что после этого колебания света происходят уже в другой плоскости, называется оптически активным. Для того чтобы соединение было оптически активным, оно должно состоять из асимметрических молекул (или ионов). Все

Рис. 17.28. Неполяризованный (а) и плоскополяризованный (б) свет.

соединения, содержащие один асимметрический атом углерода, обнаруживают оптическую активность.

Таким свойством обладают все энантиомеры. Поэтому иногда их еще называют оптическими изомерами. Если один энантиомер вращает плоскость поляризации света по часовой стрелке, то другой энантиомер вращает его обязательно против часовой стрелки. Вещества, вращающие плоскость поляризации света по часовой стрелке, называются правовращающими (рис. 17.29). Правовращающий энантиомер обозначается символом Вещества, вращающие плоскополяризованный свет против часовой стрелки, называются левовращающими. Левовращающий энантиомер обозначается символом

Оптическая изомерия имеет огромное значение в биохимии. Например, все аминокислоты, из которых осуществляется синтез белков, обладают оптической активностью, за исключением простейшей аминокислоты первого члена ряда аминокислот, которая не содержит асимметрического атома углерода. На рис. 17.30 показаны аминокислоты, систематическое название (по номенклатуре ИЮПАК) которой - 2-аминопропановая кислота, а тривиальное название - аланин. В природе встречается только этой аминокислоты (на рисунке он изображен слева). Если заменить группу в аланине произвольной группой R, то нетрудно видеть, что все остальные встречающиеся в природе аминокислоты имеют такую же конфигурацию, как у Однако знак вращения может быть либо в зависимости от конкретного характера группы R. Оптической активностью обладают также многие углеводы. В качестве примера приведем глюкозу.

Рис. 17.29. Оптическое вращение.

Рис. 17.30. 2-Аминопропановая кислота (аланин).

Мы уже отмечали, что пара энантиомеров всегда обладает одинаковыми химическими и физическими свойствами, за исключением оптической активности. Однако химическая активность каждого соединения из пары энантиомеров может оказаться совершенно различной в реакциях с другими оптически активными соединениями. Такой стереоспецифичностью характеризуются многие биохимические реакции. Это особенно относится к ферментам.

Поляриметр

Угол вращения плоскости поляризации света каким-либо энантиомером определяется его природой и, таким образом, является одной из его характеристик. Для измерения этого угла вращения используется специальный прибор - поляриметр (его схема показана на рис. 17.31). В этом приборе обычно используется монохроматический источник света, например натриевая лампа. Монохроматический свет характеризуется одной длиной волны, тогда как обычный белый свет представляет собой смесь со всеми длинами волн в пределах видимого диапазона. Монохроматический свет не поляризован. Поэтому его предварительно пропускают через поляризатор, который превращает его в плоскополяризованный свет. Затем плоскополяризованный свет пропускают через кювету с раствором того вещества, для которого производится измерение угла оптического вращения. Свет, выходящий из кюветы с образцом, имеет плоскость поляризации, повернутую по часовой стрелке или против часовой стрелки на некоторый угол, который и подлежит измерению. Направление вращения определяется по отношению к наблюдателю, а угол вращения определяется с помощью специального анализатора, который имеется в поляриметре. Анализатор представляет собой такое устройство, которое пропускает только плоскополяризованный свет. Сначала он устанавливается так, чтобы пропускать плоскополяризованный свет, вышедший из поляризатора, но не повернутый образцом. Плоскополяризованный свет, повернутый образцом, не может пройти через анализатор, который находится в исходном положении. Тогда анализатор медленно поворачивают до тех пор, пока он не станет максимально пропускать свет, прошедший сквозь кювету с образцом. В таком положении плоскость пропускания анализатора совпадает с плоскостью поляризации света, прошедшего сквозь образец (рис. 17.31, б). Разность углов между исходным и окончательным положениями анализатора определяет угол оптического вращения исследуемого вещества.

Рис. 17.31. Схема устройства поляриметра.

Лабораторный поляриметр.

Соединения, содержащие два или несколько асимметрических атомов углерода

Соединение, содержащее два или несколько асимметрических атомов углерода, может существовать в виде трех или большего количества стереоизомеров. В качестве примера рассмотрим 2,3-дигидроксибутандиовую кислоту (ее тривиальное название - винная кислота). В этом соединении имеются два асимметрических атома углерода, которые помечены звездочками на рис. 17.32. 2,3-Дигидроксибутандиовая кислота имеет три стереоизомера. Их ньюменовские проекции показаны на рис. 17.32. Все три изомера могут существовать в шахматной, заслоненной или промежуточной, скрученной, конформациях. Два из трех изомеров полностью асимметрические. Они не имеют ни плоскости симметрии, ни центра симметрии, как бы ни была ориентирована одна половина по отношению к другой. Эти два изомера представляют собой несовместимые зеркальные отражения один другого. Поэтому они образуют пару энантиомеров. На рис. 17.32 они показаны в шахматной конформации. Два асимметрических атома углерода одного из этих энантиомеров вращают плоскополяризованный свет вправо. Следовательно, этот энантиомер является правовращающим и обозначается символом (+). Асимметрические атомы углерода в другом энантиомере вращают плоскополяризованный свет влево. Следовательно, этот энантиомер является левовращающим и обозначается символом (-).

Третий стереоизомер тоже имеет два асимметрических атома углерода, но в целом его молекула симметрична. Она имеет плоскость симметрии, перпендикулярную линии связи между двумя центральными атомами углерода. Этот стереоизомер показан в заслоненной конформации на рис. 17.32. Поскольку его молекула симметрична, она не является оптически активной. Один из ее асимметрических атомов углерода вращает

Рис. 17.32. 2,3-Дигидроксибутандиовая (винная) кислота.

плоскополяризованный свет вправо, а другой - вращает его на такой же угол влево. Результирующий эффект оказывается равным нулю.

Если какой-либо стереоизомер, содержащий два или несколько асимметрических атомов углерода, является оптически неактивным из-за наличия симметрии у его молекулы, то он считается внутренне скомпенсированным. Стереоизомер, который не обладает оптической активностью (и, следовательно, не является энантиомером), называется диастереоизомером. Таким образом, изображенный на рис. 17.32 изомер в заслоненной конформации представляет собой диастереоизомер.

Рацемическая смесь двух энантиомеров тоже является оптически неактивной, поскольку правовращающее действие одного энантиомера компенсируется левовращающим действием другого энантиомера. Результирующее вращение оказывается равным нулю. Рацемическую смесь обозначают символом ( + ) и считают внешне скомпенсированной.

Итак, повторим еще раз!

1. Метан имеет тетраэдрическую молекулярную структуру.

2. Этилен имеет плоскую молекулярную структуру.

3. Ацетилен имеет линейную молекулярную структуру.

4. р-Электроны в циклической структуре ароматического соединения делокализованы, образуя -электронное облако.

5. Конформации - это различные пространственные расположения атомов в молекуле.

6. Шахматная и заслоненная конформации - это предельные типы конформаций. Скрученные конформации представляют собой промежуточные случаи между этими двумя предельными конформациями.

7. Циклическая структура циклогексана может иметь конформацию кресла либо конформацию ванны.

8. Стереоизомеры имеют различное пространственное расположение своих атомов.

9. Геометрические изомеры различаются геометрическим расположением своих атомов. Цис-транс-изомерия является примером изомерии такого типа.

10. Оптическими изомерами являются молекулы, которые представляют собой несовместимые зеркальные отражения друг друга. Они называются также энаптиомерами.

11. Рацемическая смесь содержит эквимолярные количества каждого из пары энантиомеров. Такая смесь является оптически неактивной.

12. Соединение, которое вращает плоскополяризованный свет, называется оптически активным.

13. Молекулы оптически активного соединения являются асимметрическими.

14. Для измерения угла вращения плоскополяризованного света каким-либо энантиомером используется поляриметр.

<< Предыдущий параграф Следующий параграф >>
Оглавление