Главная > Разное > Дроссели переменного тока радиоэлектронной аппаратуры
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

1. Определение гармонического состава кривой напряженности поля

Гармонический состав кривой h может быть определен следующим образом.

Выразим амплитудные значения гармоник напряженности поля формулами Фурье

Заменяя в них соответствующими значениями из (3.33) и и учитывая закон изменения для b имеем

Интегралы такого вида, как известно, подсчитывают через функции Бесселя.

Действительно, из [13] известно

Отсюда, сопоставляя (3.43) с (3.43) и учитывая известные соотношения

можно получить

где — функция Бесселя первого рода от мнимого аргумента с целым вещественным индексом ( порядка); — функция Бесселя первого рода от действительного аргумента с целым вещественным индексом k ( порядка).

Отсюда первая, основная, гармоника равна

третья гармоника

пятая гармоника

и т.д.

Таким образом, ряд кривой напряженности поля следующий вид:

и состоит только из гармоник нечетного порядка.

Как видим, гармонический состав напряженности поля весьма просто выражается через функции Бесселя соответствующих порядков. При этом реактивные слагающие напряженности поля определяются функциями Бесселя от мнимого аргумента, а активные—функциями Бесселя от действительного аргумента. Величины функций Бесселя до порядка для и до порядка для J приведены в приложении . Более подробные таблицы функций Бесселя можно найти в «Математических таблицах» (т. 22, изд. АН СССР).

Попутно без вывода дадим разложение в ряд Фурье периодических функций от гиперболического и кругового косинусов:

<< Предыдущий параграф Следующий параграф >>
Оглавление