Главная > Математика > Элементарная математика
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

206. Свойства преобразования подобия.

Пусть рассматривается некоторая фигура и фигура, полученная из нее преобразованием подобия (центр О, коэффициент k, см. рис. 263). Установим основные свойства преобразования подобия.

1. Преобразование подобия устанавливает между точками фигур взаимно однозначное соответствие.

Это значит, что при заданном центре О и коэффициенте подобия k всякой точке первой фигуры отвечает единственным образом определенная точка второй фигуры и что, обратно, всякая точка второй фигуры получена преобразованием единственной точки первой Фигуры.

Рис. 266.

Доказательство. То, что любой точке А исходной фигуры отвечает определенная точка А преобразованной фигуры, следует из определения, указывающего точный способ преобразования. Легко видеть, что, и обратно, преобразованная точка А определяет исходную точку А однозначно: обе точки должны лежать на одном луче при и на противоположных лучах при и отношение их расстояний до начала луча О известно: при Поэтому точка А, лежащая на известном нам расстоянии от начала О, определена единственным образом.

Следующее свойство можно назвать свойством взаимности.

2. Если некоторая фигура получена из другой фигуры преобразованием подобия с центром О и коэффициентом подобия k, то, и обратно, исходная фигура может быть получена преобразованием подобия из второй фигуры с тем же центром подобия и коэффициентом подобия

Это свойство, очевидно, следует хотя бы из рассуждений, приведенных при доказательстве свойства 1. Читателю остается проверить, что соотношение верно для обоих случаев: КО и

Фигуры, получаемые одна из другой преобразованием подобия, называют гомотетичными или подобно расположенными.

3. Любые точки, лежащие на одной прямой, преобразуются при гомотетии в щочки, лежащие на одной прямой, параллельной исходной (совпадающей с ней, если она проходит через О).

Доказательство. Случай, когда прямая проходит через О, ясен; любые точки этой прямой переходят в точки этой же прямой. Рассмотрим общий случай: пусть (рис. 266) А, В, С — три точки основной фигуры, лежащие на одной прямой; пусть А — образ точки А при преобразовании подобия.

Проведем покажем, что образы В и С также лежат на АК. Действительно, проведенная прямая и прямая АС отсекают на ОА, ОВ, ОС пропорциональные части: Таким образом, видно, что точки , лежащие на лучах ОВ и ОС и на прямой АК (аналогично получится и при являются соответственными для В и С. Можно сказать, что при преобразовании подобия всякая прямая, не проходящая через центр подобия, преобразуется в прямую, параллельную себе.

Из сказанного уже видно, что всякий отрезок преобразуется также в отрезок.

4. При преобразовании подобия отношение любой пары соответствующих отрезков равно одному и тому же числу — коэффициенту подобия.

Доказательство. Следует различать два случая.

1) Пусть данный отрезок АВ не лежит на луче, проходящем через центр подобия (рис. 266). В этом случае данные два отрезка — исходный АВ и ему подобно соответствующий АВ - суть отрезки параллельных прямых, заключенные между сторонами угла АОВ. Применяя свойство п. 203, находим , что и требовалось доказать.

Рис. 267.

2) Пусть данный отрезок, а значит, и ему подобно соответствующий лежат на одной прямой, проходящей через центр подобия (отрезки АВ и АВ на рис. 267). Из определения подобного преобразования имеем откуда, образуя производную пропорцию, находим , что и требовалось доказать.

5. Углы между соответствующими прямыми (отрезками) подобно расположенных фигур равны.

Доказательство. Пусть данный угол и угол, соответствующий ему при преобразовании подобия с центром О и некоторым коэффициентом k. На рис. 263, 264 представлены два варианта: . В любом из этих случаев по свойству 3 стороны углов попарно параллельны. При этом в одном случае обе пары сторон одинаково направлены, во втором — обе противоположно направлены. Таким образом, по свойству углов с параллельными сторонами углы равны.

Итак, доказана

Теорема 1. У подобно расположенных фигур любые соответствующие пары отрезков находятся в одном и том же постоянном отношении, равном коэффициенту подобия; любые пары соответствующих углов равны.

Таким образом, из двух подобно расположенных фигур любая может считаться изображением другой в некотором выбранной масштабе.

Пример 1. Построить фигуру, подобно расположенную с квадратом ABCD (рис. 268) при данном центре подобия О и коэффициенте подобия

Решение. Соединяем одну из вершин квадрата (например, А) с центром О и строим точку А такую, что Эта точка и будет соответствовать А в преобразовании подобия. Дальнейшее построение удобно провести так: соединим остальные вершины квадрата с О и через А проведем прямые, параллельные соответствующим сторонам АВ и AD. В точках их пересечения с О В и и будут помещаться вершины В и D. Так же проводим ВС параллельно ВС и находим четвертую вершину С. Почему ABCD также является квадратом? Обосновать самостоятельно!

Рис. 268.

Рис. 269.

Пример 2. На рис. 269 показана пара подобно расположенных треугольных пластинок. На одной из них изображена точка К. Построить соответствующую точку на второй.

Решение. Соединим К с одной из вершин треугольника, например с А. Полученная прямая пересечет сторону ВС в точке L. Находим соответствующую точку L как пересечение и ВС и строим искомую точку К на отрезке , пересекая его прямой ОК.

Теорема 2. Фигура, гомотетичная окружности (кругу), есть снова окружность (круг). Центры кругов подобно соответствуют.

Доказательство. Пусть С—центр окружности Ф радиуса R (рис. 270), О — центр подобия. Коэффициент подобия обозначим через k. Пусть С — точка, подобно соответствующая центру С окружности . (Мы еще не знаем, будет ли она сохранять роль центра!) Рассмотрим всевозможные радиусы окружности все они при преобразовании подобия перейдут в отрезки, параллельные себе и имеющие равные длины

Таким образом, все концы преобразованных радиусов разместятся вновь на одной окружности с центром С и радиусом R, что и требовалось доказать.

Рис. 270.

Обратно, любые две окружности находятся в гомотетичном соответствии (в общем случае даже двояком, с двумя разными центрами).

Действительно, проведем любой радиус первой окружности (радиус СМ на рис. 271) и оба параллельных ему радиуса второй окружности. Точки пересечения линии центров СС и прямых, соединяющих конец радиуса СМ с концами радиусов, параллельных ему, т. е. точки О и О" на рис. 271, могут быть приняты за центры гомотетии (первого и второго рода).

Рис. 271.

В случае концентрических окружностей имеется единственный центр гомотетии — общий центр окружностей; равные окружности находятся в соответствии гомотетии с центром в середине отрезка .

<< Предыдущий параграф Следующий параграф >>
Оглавление