> > . .1
<<
>>
<< >>

(. ). (. ) , , . .

. . -: , , . . , , , , , ., , , - , . . , . . .

. , , , ( 1- ). , , . . . , (, , ). , , , , . , , ( 2- ).

. . . - , , . .

. . . ( ). . - 91 - Q X () - , : . : λ ( Q) 1 (, , Q). , 91 . . - , - , . 1- , . , : 1) , ; 2) , , ( : , . , , . . ., . .

2- . - : 1) 3) - s, ,

. 0 1, . : 1) , , , 21, , ) , , , . . . , . .

: . , - . , , . : - , , , . , , , . . ., , , . - . , , . , . - .

, : - , . , , . - , . - , , . , (. . - , - ). . . .

.: Krohn ., Rhodes J. Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines. Transactions of the American mathematical society, 1965, v. 116; Hartma-nis J., Stearns R. E. Algebraic structure theory of sequential machines. Englewood Cliffs, 1966 [. . 206-208]; Zeiger H. P. Cascade synthesis of finite-state machines. Information and control, 1967, v. 10, ߻ 4; Muller D. E. , P ut z 1 u G. R. Frequency of decomposability among machines with a large number of states. Journal computer and system sciences, 1968, v. 2, M 3. . . .

<< >>