Главная > Математика > Разностные схемы
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ЗАДАЧИ

1. Для двумерной задачи теплопроводности в квадратной области с нулевыми значениями на границе рассмотреть разностную схему

(обозначения введены в тексте параграфа). Выписать решение этой задачи в виде ряда Фурье. Выяснить, при каких значениях параметра , имеет место энергетическое неравенство независимо от выбора соотношения шагов .

При каких а для любого выполнено строгое неравенство независимо от выбора и шага А?

2. Записать решения дифференциальной задачи

и разностной задачи

соответственно в виде ряда Фурье и конечного ряда Фурье. Доказать путем сравнения этих рядов при в предположении ограниченности что решение разностной задачи сходится к решению дифференциальной задачи. Доказать, что при сходимость, вообще говоря, не имеет места.

3. Выписать в виде конечного ряда Фурье решение разностной задач» Дирихле для уравнения Пуассона в квадратной области

при граничном условии:

Указание к где удовлетворяет однородным условиям на границе.

<< Предыдущий параграф Следующий параграф >>
Оглавление