Главная > Математика > Курс высшей математики, Т.2
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

64. Основные свойства кратных интегралов.

Раньше мы доказывали свойства определенного интеграла, пользуясь его определением, как предела сумм [I, 94]. Совершенно так же можно доказать и основные свойства кратных интегралов. Для простоты мы все функции будем считать непрерывными, так что интегралы от них безусловно имеют смысл.

I. Постоянный множитель можно выносить за знак интеграла, и интеграл от конечной суммы функций равен сумме интегралов от слагаемых:

II. Если область разложена на конечное число частей [например на две части , то интеграл по всей области равен сумме интегралов по всем частям:

III. Если в области , то

В частности [I, 94]:

IV. Если сохраняет знак в области (а), то имеет место теорема о среднем, выражающаяся формулой

где - некоторая точка, лежащая внутри области (а).

В частности, при получаем

где — площадь области .

Аналогичные свойства имеют место и для трехкратного интеграла. Заметим, что при определении двукратного и трехкратного интеграла как предела суммы считается всегда, что область интегрирования конечна и подынтегральная функция во всяком случае ограничена, т. е. существует такое положительное число А, что во всех точках N области интегрирования. Если эти условия не выполнены, то интеграл может существовать как несобственный интеграл аналогично тому, как это имело место для простого определенного интеграла [I, 97 и 98]. Мы займемся несобственными кратными интегралами в § 8.

<< Предыдущий параграф Следующий параграф >>
Оглавление